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Executive Summary 
The objectives of this project were to: 

(1) Use generalized additive models (GAMs) driven with satellite and surface 
observations to examine the impact of fires on background and total O3 and 
PM2.5 in Texas urban areas. 

(2) Examine the ability of CAMx photochemical model to simulate these fire 
impacts by applying similar statistical methods to the CAMx results. 

(3) Use any statistically significant differences found to prioritize different 
approaches to improve the ability of CAMx to simulate the impacts of domestic 
fires on air quality. 

 
We performed a statistical analysis using generalized additive models (GAMs) to see how 
fires impacted background and maximum concentrations of O3 and PM2.5 in Houston and 
El Paso. Our results suggest that on days when the HMS indicated smoke over Houston 
and El Paso, the daily average PM2.5 was elevated by 1.4-2.6 µg/m3 on average 
(background and maximum) while the background MDA8 O3 was elevated by 2.4-8 ppbv 
on average. Unfortunately, the results depend strongly on which set of fire predictors is 
used. For Houston, the change in O3 impact as the smoke enters the city varies from -0.9 
ppbv to +6.0 ppbv, with three out of four methods predicting an increase in mean O3 as 
the smoke enters the city. In El Paso, the change in mean O3 impact as the smoke enters 
the city varies from -1.6 ppbv to -0.5 ppbv. The geographic fire variables from Sec. 4.1.3 
give the best fitting statistics and predicts fire impacts of 7.0-8.0 ppbv in both urban areas, 
with a slight decrease in the impact when the smoke enters the city. 

 
We also performed a statistical analysis using generalized additive models (GAMs) to see 
if the CAMx predictions were consistent with the impact of fires on background and 
maximum concentrations of O3 in Houston and El Paso. For El Paso, our analysis 
suggested that there were statistically significant differences between CAMx and the 
ambient data, but further analysis showed that the predicted impacts of fires in both cases 
were very similar. For Houston, however, the differences between CAMx and the ambient 
data fits were not statistically significant for maximum O3, but the CAMx data strongly 
overestimates the background O3 for Houston on both smoky and non-smoky days.  
 
Since CAMx generally appears to give similar predictions for the impacts of smoke as the 
ambient data, there is little need to identify areas for improvement as called for in 
Objective 3 of this project. The exception is for the impacts of smoke on Houston 
background O3, where CAMx predicts a 2 ppb larger impact. This is likely related to the 
general large overestimate of background O3 by CAMx in Houston but may also be due to 
errors in the chemistry as emissions from the Yucatan interact with halogens over the 
Gulf.  
 
In addition, our results showed that CAMx overestimates Houston background O3 on 
both smoky and non-smoky days, suggesting that further work needs to be done on ozone-
destroying halogen emissions and chemistry and on the biogenic emissions upwind of 
Houston. Similarly, the underpredictions of maximum O3 in El Paso suggest that further 
work is needed on CAMx emissions for El Paso and Ciudad Juarez and the O3 chemistry 
within the combined urban area. 
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Future work should focus on finding ways to better determine the best set of smoke 
predictors for use in statistical studies such as this, with a focus on high tail events where 
smoke could lead to an exceedance of air quality standards using methods from Brown-
Steiner et al. (2021). While the predictions of smoke impact on O3 from CAMx appear to 
be reasonable based on this study, our results suggest that further work is needed to (a) 
address the overestimate of Houston background O3 on both smoky and non-smoky days 
and (b) the underpredictions of maximum O3 in El Paso.  
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1 Introduction 
 
Understanding the impact of domestic fire smoke on urban air quality (AQ) requires 
understanding (i) the chemistry of the smoke before it reaches the city and (ii) the changes 
in the urban production rate of O3 and PM2.5 caused by the smoke. The relative 
importance of these two pathways on the air quality impacts of domestic fire smoke is not 
well understood and it is unclear which processes should be targeted to reduce the overall 
uncertainty. 
 
In addition, three-dimensional (3D) photochemical models like CAMx can have trouble 
representing the near-source chemistry of the smoke plume and the impact of smoke 
mixing with urban pollution due to a combination of low spatial resolution near fires and 
incorrect representation of the chemistry of smoke-specific VOCs (e.g., Baker et al., 2016). 
These limitations in physical approaches have led to the development of a variety of 
statistical approaches to estimate the impact of biomass burning on urban AQ (e.g., Gong 
et al., 2017; de Foy et al., 2021). However, little work has been done to compare the 
statistical and 3D photochemical approaches or to identify priorities for further 
development of both approaches. Thus, the US EPA and US Forest Service organized 
assessment of smoke research needs noted this was a key priority for future smoke 
chemistry research (Alvarado et al., 2022).  
 
Thus, the objectives of this project are to: 

(1) Use generalized additive models (GAMs) driven with satellite and surface 
observations to examine the impact of fires on background and total O3 and 
PM2.5 in Texas urban areas. 

(2) Examine the ability of CAMx photochemical model to simulate these fire 
impacts by applying similar statistical methods to the CAMx results. 

(3) Use any statistically significant differences found to prioritize different 
approaches to improve the ability of CAMx to simulate the impacts of domestic 
fires on air quality. 

 
In this final report, we examine the impact of fires on urban AQ in Texas using 

statistical modeling (Objective 1) and the ability of CAMx photochemical model to 
simulate these fire impacts by applying similar statistical methods to the CAMx results 
(Objective 2). Two urban areas were examined: Houston-Galveston-Brazoria (HGB) and 
El Paso. Background O3 and PM2.5 concentrations were estimated using the lowest value 
observed at sites near the border of the area of interest, as TCEQ has done in the past 
(e.g., Berlin et al., 2013). Analyzing the impacts of fires on background and urban sites 
separately allows us to examine the change in O3 and PM2.5 due to the mixing of smoke 
with urban pollution separately from the impact of smoke before it mixes with urban 
pollution.  
 
Below we discuss the dataset for this project, including the smoke and fire predictors 
developed so far for this project (Section 2), the statistical modeling approach (Section 3), 
and our initial findings (Section 4). Section 5 discusses our QA findings, Section 6 
summarizes our conclusions, and Section 7 describes our plans for future research.  
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2 Dataset for Model Training 
 

2.1 Ambient Air Quality Data 

Maximum daily 8-hour average (MDA8) O3 mixing ratios and daily average PM2.5 

concentrations will be calculated for each HGB and El Paso site from the surface air 
quality data in TAMIS. Sites in each urban area were separated into background (for sites 
on the outskirts of the city) and urban (for sites near the city core). For each urban area, 
the minimum value of MDA8 O3 and daily average PM2.5 from background sites upwind 
of the urban core were selected as the background estimate for that day, while the 
maximum concentrations were selected as the urban maximum.  
 

2.2 Meteorological Predictors 
 
The meteorological predictors to be used in this study (Table 1) are based on our previous 
GAM studies of the ability of meteorological predictors to estimate the concentrations of 
O3 and PM2.5 at urban and background monitoring sites in Texas. Our team has shown 
that these meteorological predictors, plus the previous day’s MDA8 O3 or daily average 
PM2.5, can explain approximately 70% of the variability in background and urban O3, and 
about 30-40% of the variability in background and urban PM2.5 (e.g., Alvarado et al., 
2015; McVey et al., 2018; Pernak et al., 2019; Brown-Steiner et al., 2021).  

Table 1. Meteorological parameters used in the GAMs. The column name is given in 
italics. 

1) Afternoon mean temperature (oC, afternoon_mean_T, 1-4 PM CST) 
2) Diurnal temperature change (oC, diurnal_T) 
3) Daily average wind speed (m/s, daily_ws) 
4) Daily average wind direction (degrees clockwise from North, daily_wd) 
5) Daily average water vapor density (g/m3, SWVP) 
6) Morning surface temperature difference (1200 UTC) (temperature at 925 or 

700 mb–temperature at surface at 1200 UTC) (oC, T_dif_925mb or 
T_dif_700mb) 

7) Transport direction (degrees clockwise from North, HYSPLIT_Bearing) 
8) Transport distance (m, HYSPLIT_dist) 

 
Variables 1-5 in Table 1 were calculated from the surface meteorological data in the Texas 
Air Monitoring Information System (TAMIS). Variable 6, which reflects the vertical 
stability of the atmosphere each day, was calculated from upper atmosphere data in the 
Integrated Global Radiosonde Archive (IGRA Version 2). Given El Paso’s higher 
elevation, an upper atmosphere level of 700 mbar was used for this city as opposed to the 
925 mbar value used for all other urban areas. Variables 7 and 8 were calculated from 24-
hour NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) 
back-trajectories driven with 12 km horizontal resolution NAM data. As in Camalier et al. 
(2007), these back-trajectories are calculated assuming an initial height of 300 m above 
ground level (AGL) and are started at noon local solar time. The endpoints of the back-
trajectories were used to calculate the 24-hour transport direction and distance for each 
urban area for the 2012-2021 period. 
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2.3 Fire and Smoke Predictors  

 
The NOAA Hazard Mapping System (HMS) Fire and Smoke product will be our primary 
source of fire predictors, as we have shown that days where the HMS product indicates 
smoke over Houston tend to be associated with enhancements in CO, O3, NOx, and NOy 
(Figure 1).  This gives us confidence in the ability of our statistical modeling to be able to 
identify a statistically significant impact of fires on air quality in HGB and El Paso. To 
make the HMS, satellite analysts compare automated fire detections to the infrared 
satellite images used to produce them to ensure each fire exists (Ruminski et al., 2006; 
Schroeder et al., 2008; Brey et al., 2018). Small fires are more difficult to detect and are 
underreported (e.g., Hu et al., 2016). False fire detections are removed, and fires that were 
not automatically detected are added manually.  
 

 

 
 
After identifying fire locations, HMS analysts use imagery from multiple NOAA and NASA 
satellites to identify the geographic extent of smoke plumes (Rolph et al., 2009; Ruminski 
et al., 2006). Due to the frequent interference by cloud cover, the number and extent of 
smoke plumes reported in the HMS represents a conservative estimate.  
 
In addition to the HMS, we use the Fire Inventory from NCAR (FINN v2.5, Wiedinmyer 
et al., 2011, McDonald-Buller et al., 2015) to determine fire counts within different 
distances from the city center (0.5, 1.0, 2.5, 5.0, 10.0, and 25.0 degrees (lat/lon) from the 
city).  

Figure 1. Map of selected surface air quality monitoring sites in HGB. Tables show 
concentrations of species measured at each circled site, divided into HMS-smoke and 
HMS-no smoke categories. 
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We also convolved the FINN 0.1-degree estimates of total NOx, volatile organic 
compounds (VOC), and PM2.5 emissions from fires with daily estimates of upwind 
influences on HGB and El Paso measurements (i.e., upwind surface “footprints” 
calculated from STILT) to determine the daily transport of O3 precursors and primary 
PM2.5 to each city. The Stochastic Time-Inverted Lagrangian Transport (STILT) model 
(Lin et al., 2003; Nehrkorn et al., 2010) is an enhanced version of the HYSPLIT model 
(Draxler and Hess, 1998) aimed at mass conservation, a critical consideration for 
inversion work. STILT computes the “footprint” (adjoint of the transport field) by 
following an ensemble of tracer particles backwards in time from the location of each 
measurement (“receptor”). The footprint (units: ppm/μmol m-2 s-1) quantifies the 
concentration enhancement at the receptor at each point in time due to unit surface flux 
at each upwind location. Here we will generate daily STILT footprints for each urban area 
driven with 12 km NAM meteorological data. As with the HYSPLIT predictors in Section 
1.2.1.2, these footprints will be initialized at local noon at a height of 300 m and will go at 
least 72 hours back in time. 
 
Note that, as STILT does not account for the chemistry along the transport path, it cannot 
directly account for the chemical formation of O3 and PM2.5 as the smoke is transported 
from the fire. Instead, we will use the STILT footprints multiplied by the FINN fire 
emissions as an indicator of smoke transport and see how this smoke indicator correlates 
with O3 and PM2.5. We will also examine how the predictions depend on smoke age by 
segregating the footprint predictors into fresh smoke (< 24 hours transport time from fire 
to city) and aged smoke (≥ 24 hours). 
 
 Here we test several fire and smoke predictors based on the HMS and FINN data, 
including: 

a. A binary predictor for the presence of smoke according to the NOAA HMS 
(Figure 1) 

b. The total FINN fire counts in surrounding regions binned by distance from 
the city at 0.5, 1.0, 2.5, 5.0, 10.0, and 25.0 degrees (lat/lon). 

c. FINN fire counts and total emissions for different geographic regions: 
Yucatan, all of Mexico, California, and states bordering Texas (LA, AR, OK, 
NM).  

d. WRF-STILT footprints for NO, NO2, CO2, and CO.   
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2.4 CAMx Data 
 
TCEQ generated CAMx output for the Houston (4 km horizontal resolution) and El Paso 
(12 km resolution) for the year 2019 was used for the comparison with observed data. 
MDA8 O3 values were calculated for each monitoring location based on the CAMx grid 
box that contained the monitoring location. New CAMx-based values for the maximum 
MDA8 O3 and background MDA8 O3 value for each urban area by date were calculated 
using the same methods used for the ambient data (Section 2.1). These were added to the 
model training dataset with a new flag, “Is_Model”, which is 1 for data from CAMx and 0 
for ambient data. All other parameters were kept identical for the “Is_Model” cases, such 
that the new lines only differ from the ambient data in their values for Max MDA8 O3, 
background MDA8 O3, and Is_Model. 
 

3 Generalized Additive Models  
 
GAMs are a form of linear modeling which allows non-linear functions of individual 
predictors within a regression framework (Wood, 2017). This is like standard linear 
regression techniques, which optimize scalar coefficients (ak) for each predictor (xk) for k 
= 1 to p: 

  

except that the coefficients are replaced with potentially non-linear smooth functions: 

   

The GAM approach optimizes these smooth functions. An advantage of GAMs over neural 
networks and similar machine learning techniques is that it is easy to isolate the effects of 
the individual variables in GAMs. This will allow us to separate the impact of fire-related 
variables from the impact of the rest of the predictors. A potential disadvantage relative 
to standard linear regression is that the smooth functions can overfit the data, and so care 
needs to be taken to ensure that the derived smooth functions are realistic and robust to 
changes in the training data set. To address this, the R package mgcv includes routines to 
fit GAMs, examine the models graphically, and test their robustness via k-fold cross-
validation and other techniques. 

In this study, all meteorological predictors and the FINN fire counts were simulated as 
smooth functions using cubic spline basis set, with periodic splines used to account for 
the effects of the day of year and HYSPLIT bearing. Year, day of week, and the HMS smoke 
flag were included as factor variables. The models predict the natural logarithm of O3 and 
PM2.5 concentrations as these are usually log-normally distributed.  
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4 Results 
4.1 Objective 1: Impact of fires on urban AQ in Texas 

 
4.1.1 Smoke Flag Tests 

 
In these tests, we trained GAMs by adding the HMS smoke flag to the meteorological 
predictors listed in Section 2.2. For ozone, the HMS smoke flag was always a significant 
predictor (p<0.001). All predictors included were highly significant (p<0.001) in Houston, 
while in El Paso they were all highly significant except for afternoon mean temperature, 
which was still very significant (p<0.02). Table 2 summarizes the change in the quality of 
the model fits with and without the smoke flags by examining the deviance explained, the 
total model degrees of freedom, and the Akaike information criterion (AIC). A lower AIC 
indicates a better model fit. In all cases, adding the HMS smoke flag leads to a slightly 
better model fit while the increase in degrees of freedom for the model is less than 1.  

Table 2. Degrees of freedom (df), Akaike information criterion (AIC), and deviance 
explained (Dev. Exp., %) for each ozone model. 

 With Smoke Flag Without Smoke Flag 
 df AIC Dev. Exp. df AIC Dev. Exp. 
Houston Bkgrd 46.9 16353 63.7% 46.2 16445 63.4% 
Houston Max 46.5 17129 67.2% 45.9 17224 67.0% 
El Paso Bkgrd 44.2 15350 51.5% 43.4 15429 51.0% 
El Paso Max 43.1 15696 54.2% 42.2 15764 53.9% 

 
With these models, we then estimate the impact of smoke on background and maximum 
MDA8 O3 in each urban area by calculating the GAM predictions with the true smoke flag 
minus the GAM predictions when the smoke flag is set to 0 for all days. We calculated this 
difference for all days where the HMS indicated smoke over the city (~10% of days). The 
distributions of these smoke-related differences are summarized in Table 3. We see 
similar mean impacts on background MDA8 O3 in each urban area (2.4 ppbv). However, 
in Houston we see a slight increase in MDA8 O3 (0.2 ppbv) in the city on smoky days, 
while in El Paso we see a slight decrease (0.5 ppbv). This suggests that in city chemistry 
has little impact on the ozone impacts from smoke and can either increase or decrease 
those impacts. Note that while these tests only account for the presence of smoke as 
indicated by HMS, not its concentration, we can conclude that the presence of smoke over 
the city as indicated by HMS is associated with an increase in MDA8 O3 that can vary 
from 1.2 ppbv to 4.8 ppbv, and thus the HMS smoke product can be treated as significant 
evidence that the MDA8 O3 for a given day was increased by smoke. 
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Table 3. Change in MDA8 O3 due to the presence of smoke as indicated by the HMS 
smoke flag in the GAMs trained only on the meteorological predictors and the HMS 
smoke flag. 

 Houston MDA8 O3 El Paso MDA8 O3 
 Bkgrd (ppbv) Max (ppbv) Bkgrd (ppbv) Max (ppbv) 

Minimum 1.2 1.5 1.7 1.4 
25th Percentile 1.9 2.1 2.2 1.8 

Median 2.3 2.5 2.4 1.9 
Mean 2.4 2.6 2.4 1.9 

75th percentile 2.8 3.0 2.5 2.0 
Max 4.7 4.8 2.9 2.4 

Std. Dev. 0.64 0.60 0.23 0.19 
 
Unfortunately, the PM2.5 GAM fits, both with and without the smoke flag, showed very 
poor performance. The total deviance explained generally less than 30%, and the residual 
plots versus fitted values (not shown) indicated significant heteroskedacity in the data. 
Several variable transformations were attempted to resolve this issue, but not removed 
the heteroskedacity. Simple correlation analysis also suggested that further attempts were 
unlikely to succeed, as the predictor variables have very low correlations with either 
background or maximum PM2.5.  
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Figure 2. Box and whisker plots pf the daily average PM2.5 differences on days with the 
HMS indicating smoke overhead (smoke flag = 1) and with no smoke overhead (smoke 
flag = 0). (a) Houston background PM2.5. (b) Houston maximum PM2.5. (c) El Paso 
background PM2.5. (d) El Paso Maximum PM2.5. 

Thus, instead of showing GAM fit results that are unreliable, we used the simpler 
approach of comparing the distributions of maximum and background PM2.5 for days 
with and without HMS smoke. Figure 2 shows box plots for the four cases. In all cases, 
the PM2.5 distributions on days where HMS indicated smoke have higher mean PM2.5 

concentration, and the differences in the means (t-test) and the distributions 
(Kolmorogov-Smirnov test) are statistically significant at p << 0.001. The 95% confidence 
intervals of the mean differences are: 

• Houston PM2.5 Background: 1.9-2.6 µg/m3 
• Houston PM2.5 Max: 1.5-2.3 µg/m3 
• El Paso PM2.5 Background: 1.7-2.5 µg/m3 
• El Paso PM2.5 Max: 1.5-2.6 µg/m3 
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This suggests that on average, days where the HMS indicated smoke overhead have about 
2 µg/m3 more PM2.5 at the surface, but that these differences to not significantly change 
between the background and the city core, so the urban chemistry has little impact on the 
PM2.5 impact of fires.  
 

4.1.2 FINN fire count tests 
 
We then added the different FINN fire count bins to our O3 GAMs without the HMS 
smoke flag to determine which count distance improved the fit the most. The different 
predictors were evaluated using the deviance explained by the GAM, the minimized 
generalized cross-validation (GCV) score, and the statistical significance of the predictor 
in the fit. The results for background O3 are shown in Table 4 and the results for 
maximum O3 are in Table 5. For El Paso, the best results are for using a ±25 degree 
(lat/lon) box around the city to calculate fire counts. This area includes the Yucatan 
peninsula and California, major locations of annual fires. The Houston maximum O3 is 
best fit with a ±10-degrees box, which includes the Yucatan. For Houston background O3, 
the ±5-degree box is slightly better, but to keep consistency with the maximum we choose 
to use the 10-degree box. In all cases, adding the smoke flag to the chosen FINN fire count 
predictor increases the quality of the fit. Thus, we examine the fire impacts on ozone 
implied by the GAMs using (a) the meteorological predictors from Section 2.2, (b) the 
HMS smoke flag, and (c) the FINN fires counts at ±10-degrees from Houston and ±25-
degrees from El Paso. This suggests that the impact of smoke is primarily from remote 
fires (1000 to 2500 km away). 
 

Table 4. Quality of fit for GAMs using different FINN fire count predictors to predict 
maximum MDA8 O3.  

 Houston Max MDA8 O3 El Paso Max MDA8 O3 
 Dev. Exp. 

(%) 
GCV p Dev. Exp. 

(%) 
GCV p 

0.5 
degrees 

67.5 83.019 <0.001 53.9 46.927 0.75 

1.0 
degrees 

67.7 82.492 <0.001 53.9 46.899 0.21 

2.5 
degrees 

68.4 80.655 <0.001 54.1 46.741 <0.01 

5.0 
degrees 

68.7 79.895 <0.001 54.2 46.608 <0.001 

10 degrees 69.0 79.214 <0.001 54.1 46.859 0.08 
25 
degrees 

67.5 82.795 <0.001 54.9 45.988 <0.001 

Best + 
HMS 
smoke 
flag 

69.1 79.025 <0.001 55.1 45.959 <0.001 
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Table 5. Quality of fit for GAMs using different FINN fire count predictors to predict 
background MDA8 O3.  

 Houston Bkgrd MDA8 O3 El Paso Bkgrd MDA8 O3 
 Dev. Exp. 

(%) 
GCV p Dev. Exp. 

(%) 
GCV p 

0.5 
degrees 

63.5 60.402 0.05 51.0 40.737 0.76 

1.0 
degrees 

63.7 60.14 0.001 51.0 40.739 0.69 

2.5 
degrees 

64.1 59.389 <0.001 51.2 40.619 0.01 

5.0 
degrees 

64.4 58.959 <0.001 51.2 40.621 0.04 

10 degrees 64.4 59.072 <0.001 51.3 40.619 0.01 
25 
degrees 

64.0 59.671 <0.001 52.3 39.788 <0.001 

Best + 
HMS 
smoke 
flag 

64.6 58.890 <0.001 52.6 39.641 <0.001 

 
As in Section 4.1.1, we use the GAMs to calculate the MDA8 O3 first using the actual HMS 
smoke flag and FINN fire counts, and then estimate a smoke-free case by setting the 
smoke flag to 0 for all days and setting the FINN fire count variables to their minimums 
on smoky days (30 for the ±10-degree Houston box and 400 for the ±25-degree El Paso 
box). The distribution of these differences on days where the HMS indicated smoke 
overhead are shown in Table 6. In general, these more advanced GAMs indicate a larger 
influence of smoke on background MDA8 O3 in these urban areas that the smoke flag only 
GAMs did, averaging 6.1 ppbv in El Paso and 7.8 ppbv in Houston. In addition, while the 
El Paso differences between the background and maximum impacts of smoke follow the 
previous pattern of a decrease as the smoke enters the city (-1.6 ppbv on average), in 
Houston we now see a significant increase related to the fire predictors (+6.0 ppbv). These 
differences in smoke impact between the background and maximum MDA8 O3 are 
statistically significant at p<<0.001 (t-test and Kolmorogov-Smirnov test). It is unclear 
why these urban areas have such significant differences in the estimated smoke impact 
on urban chemistry. The decrease in El Paso could be due to NO titration of the O3 from 
the fires, while the Houston results would suggest a significant impact of the fire-related 
VOCs on the urban chemistry.   
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Table 6. Change in MDA8 O3 due to the presence of smoke as indicated by the HMS 
smoke flag in the GAMs trained on the meteorological predictors, the HMS smoke flag, 
and FINN fire counts. 

 Houston MDA8 O3 El Paso MDA8 O3 
 Bkgrd (ppbv) Max (ppbv) Bkgrd (ppbv) Max (ppbv) 
Minimum 1.3 2.4 2.7 1.9 
25th Percentile 5.8 11.3 5.3 3.3 
Median 7.9 13.6 6.1 4.3 
Mean 7.8 13.8 6.1 4.5 
75th percentile 9.6 16.9 6.9 5.7 
Max 18.4 28.2 9.4 8.8 
Std. Dev. 3.0 4.3 1.4 1.4 

 
4.1.3 Geographic FINN fire count and emissions fits 

 
To further investigate the influence of fire emissions on urban MDA8 O3 in Houston and 
El Paso, we calculated total fire counts and emissions of multiple species in geographic 
regions near Texas: the Yucatan (YUC), all of Mexico (MEX), California (CA), and states 
bordering Texas (LA, AR, OK, NM). We then replaced the FINN fire count predictors 
used in Section 4.1.2 above with these new predictors one by one to find the FINN 
variable in each region that gave the best fit with MDA8 background and maximum O3.  
The best variables for each region and predictand are given in Table 7.  
 

Table 7. Best FINN fire variable by geographic region.  

Region 

Houston El Paso 
Maximum 
MDA8 O3 

Background 
MDA8 O3 

Maximum 
MDA8 O3 

Background 
MDA8 O3 

MEX Biomass 
burned 
(BMASS) 

Non-methane 
hydrocarbon 
(NMHC) 
emissions 

BMASS Xylene 
emissions 

YUC Fire Area Fire Count Fire Area Fire Area 
OK Fire Count BMASS Fire Count Fire Count 
NM Fire Count Fire Count Fire Count Fire Count 
LA Fire Count Fire Count Hydroxyacetone 

(HYAC) 
emissions 

CH3CN 
emissions 

AR Fire Count NMHC 
emissions 

Fire Count Fire Count 

CA NOx emissions 
as NO 

Glycoladehyde 
(GLYALD) 
emissions 

NOx emissions 
as NO 

Fire Area 
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The general FINN fire count predictors used in Section 4.1.2 were replaced with these 
geographic variables and the GAMs were rerun. Variables that were not significant at 
least p < 0.10 were removed and the fits rerun. The results were: 
 

• Houston Max O3 – Only MEX, AR, and NM kept as significant predictors. Total 
deviance explained was 68.2% with a GCV of 81.6, which is a better fit than the 
large-scale FINN fire count fit from Section 4.1.2. Increases in Mexican biomass 
burned and Arkansas fire counts were associated with increased O3 but saturated 
at relatively low values, while NM fire counts slightly decreased O3 (Figure 3). 

 

 
Figure 3. Smooth function fits for the log of maximum MDA8 O3 in Houston.  
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• Houston Background O3 – All variables were kept as significant predictors.  Total 
deviance explained was 65.5% with a GCV of 57.9, which is a better fit than the 
large-scale FINN fire count fit from Section 4.1.2. All fire impacts were positive 
except for NM, with MEX and AR showing the largest impacts (Figure 4). 
 

 
Figure 4. Smooth function fits for the log of background MDA8 O3 in Houston. 

 
• El Paso Max O3 – AR was removed, but all other variables kept as significant 

predictors. Total deviance explained was 57.1% with a GCV of 44.43, which is a 
better fit than the large-scale FINN fire count fit from Section 4.1.2.  Only the 
Mexico predictor had a large increase in O3 and saturated quickly (Figure 5). 
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Figure 5. Smooth function fits for the log of maximum MDA8 O3 in El Paso. 

 
• El Paso Background O3 – AR was removed, but all other variables kept as 

significant predictors. Total deviance explained was 54.4% with a GCV of 38.57, 
which is a better fit than the large-scale FINN fire count fit from Section 4.1.2.  
Mexico tended to increase O3 while NM decreased it (Figure 6). 
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Figure 6. Smooth function fits for the log of background MDA8 O3 in El Paso. 

 

 
As before, we use the GAMs to calculate the MDA8 O3 first using the actual HMS smoke 
flag and geographic FINN variables, and then estimate a smoke-free case by setting the 
smoke flag to 0 for all days and setting the geographic FINN variables to their minimums 
on smoky days. The distribution of these differences on days where the HMS indicated 
smoke overhead are shown in Table 8. In this case, the GAMs predict relatively large 
impacts of smoke on background and maximum MDA8 O3 in both urban areas (means of 
7-8 ppbv) with a slight decrease in the smoke related O3 when the smoke enters the city 
(-0.9 ppbv mean for Houston, -0.2 ppbv mean for El Paso).  The small changes as the 
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smoke enters the city are similar to the smoke flag only results from Section 4.1.1, but the 
absolute impact of smoke is estimated to be much higher in this fit.  
 

Table 8. Change in MDA8 O3 due to the presence of smoke as indicated by the HMS 
smoke flag in the GAMs trained on the meteorological predictors, the HMS smoke flag, 
and FINN geographic variables. 

 Houston MDA8 O3 El Paso MDA8 O3 
 Bkgrd (ppbv) Max (ppbv) Bkgrd (ppbv) Max (ppbv) 
Minimum 1.0 2.0 1.6 0.3 
25th Percentile 5.6 5.3 5.5 5.4 
Median 7.7 7.0 7.4 7.2 
Mean 8.0 7.1 7.2 7.0 
75th percentile 9.8 8.4 8.7 8.5 
Max 23.2 20.5 13.0 12.6 
Std. Dev. 3.7 2.8 2.1 2.3 

 
 
While the geographic FINN fits seem to have the best fitting statistics (deviance explained 
and GCV), the fact that they predict negative impacts for some areas suggests that they 
may be fitting significant amounts of noise. In addition, as the variables are not kept 
constant between the max and background fits, it is not clear if the deltas calculated for 
smoke entering the city are trustworthy.  
 

4.1.4 WRF-STILT footprint fits 
The convolved WRF-STILT footprints with the FINN emissions at 0.01x0.01 

degrees generally gave similar fits regardless of the specific species fit. Thus, here we focus 
on the results for FINN NO. The convolved footprints were highly significant predictors 
(p << 0.001) of background and maximum MDA8 O3 in Houston, but surprisingly were 
not significant predictors for El Paso. The deviance explained and GCV statistics for each 
fit were: 

• Houston Maximum – Deviance explained 67.9%, GCV 81.9  
• Houston Background – Deviance explained 64.2%, GCV 59.4  
• El Paso Maximum – Deviance explained 54.2%, GCV 46.1 
• El Paso Background – Deviance explained 51.8%, GCV 39.8 

These fit statistics are generally worse than those using the FINN fire count variables 
directly in Sections 4.1.2 and 4.1.3, suggesting that the WRF-STILT footprints may not 
correctly represent the transport of biomass burning emissions to these urban areas.  

As before, we use the GAMs to calculate the MDA8 O3 first using the actual HMS smoke 
flag and NO footprints, and then estimate a smoke-free case by setting the smoke flag to 
0 for all days and setting the NO footprints to their minimums on smoky days. The 
distribution of these differences on days where the HMS indicated smoke overhead are 
shown in Table 9. As only the Houston results had the footprints as significant predictors, 
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we focus on those. In this case, the GAMs predicted a mean impact of smoke on Houston 
background O3 of 4.5 ppbv, increasing by 2.2 ppbv as the smoke entered the city.  
 

Table 9. Change in MDA8 O3 due to the presence of smoke as indicated by the HMS 
smoke flag in the GAMs trained on the meteorological predictors, the HMS smoke flag, 
and the WRF-STILT/FINN NO footprints. 

 Houston MDA8 O3 El Paso MDA8 O3 
 Bkgrd (ppbv) Max (ppbv) Bkgrd (ppbv) Max (ppbv) 
Minimum -2.9 1.2 1.6 1.2 
25th Percentile 3.4 5.4 2.3 1.7 
Median 4.7 6.6 2.6 1.9 
Mean 4.5 6.7 2.7 2.0 
75th percentile 5.8 8.3 3.1 2.1 
Max 10.22 13.3 4.7 5.8 
Std. Dev. 1.9 2.4 0.6 0.6 

 
Table 10 summarizes the mean results for Objective 1. Unfortunately, the results depend 
strongly on which set of fire predictors is used. For Houston, the range of impacts of fires 
on mean background MDA8 O3 is 2.4 to 8.0 ppbv, with the change in O3 impact as the 
smoke enters the city varying from -0.9 ppbv to +6.0 ppbv, with three out of four methods 
predicting an increase in mean O3 as the smoke enters the city. In El Paso, the range of 
impacts of fires on mean background MDA8 O3 is 2.4 to 7.2 ppbv, similar to Houston, 
with the change in mean O3 impact as the smoke enters the city varying from -1.6 ppbv to 
-0.5 ppbv. The geographic fire variables from Sec. 4.1.3 give the best fitting statistics and 
predicts fire impacts of 7.0-8.0 ppbv in both urban areas, with a slight decrease in the 
impact when the smoke enters the city.   
 

Table 10. Mean smoke impacts on background and maximum MDA8 O3 in each urban 
area for different sets of smoke predictors. 

 Houston MDA8 O3 El Paso MDA8 O3 
 Bkgrd 

(ppbv) 
Max 

(ppbv) 
Bkgrd 
(ppbv) 

Max 
(ppbv) 

Smoke flag only (Sec. 4.1.1) 2.4 2.6 2.4 1.9 
+ large-scale fire counts  
(Sec. 4.1.2) 

7.8 13.8 6.1 4.5 

+ geographic fire variables  
(Sec. 4.1.3) 

8.0 7.1 7.2 7.0 

+ WRF-STILT footprints  
(Sec. 4.1.4) 

4.5 6.7 2.7 2.0 

 
  
 

4.2 Objective 2: Ability of CAMx to simulate fire impacts 
We used the updated dataset with the CAMx data (Section 2.4) to retrain the GAMs for 
maximum and background MDA8 O3 for El Paso and Houston (total of four cases). The 
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significance of the “Is_Model” factor variable was used to determine if the differences 
between the CAMx and ambient results were statistically significant. The model smooth 
functions and factor values were then examined for differences between the GAM trained 
with CAMx data and the ones without CAMx data, and the predicted impacts of smoke by 
each model were examined for differences. 
 

4.2.1 El Paso Maximum MDA8 O3 

Our early work (Section 4.1.2) had shown that combining the HMS smoke flag and the 25 
degree FINN fire counts gave the best results for the ambient data for El Paso Maximum 
MDA8 O3 values, and so those parameters were reused here. The “Is_Model” variable was 
highly significant for this case (p<0.001), suggesting that the CAMx and ambient model 
results are significantly different. However, an examination of the smooth functions for 
each fit (Figure 7) shows very little difference between the smooth function fits for the 
cases with and without CAMx data, including for the dependence of maximum O3 on the 
FINN fire counts. The parametric coefficient for HMS smoke flag also showed only small 
differences between the two GAMs (0.024 for ambient data only, 0.021 when CAMx data 
is added). These results tend to suggest that the difference between the CAMx predictions 
and the ambient data could be mostly explained by a constant fractional bias which is 
mostly accounted for by the Is_Model factor variable coefficient.  

 
Figure 7. Smooth function fits for El Paso maximum MDA8 O3 using (a) only ambient 
data and (b) using CAMx data with an Is_Model factor variable. 

 
We further examined the differences by (a) comparing the maximum MDA8 O3 
predictions for 2019 for different values of the Is_Model variable to examine the 
fractional bias between the model and ambient data and (b) comparing the GAM 
predictions with and without the smoke variables for 2019 to examine how the predicted 
smoke impacts differ in the ambient data and the CAMx simulations. Table 11 shows the 
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differences in the GAM predictions of the ambient and CAMx data for 2019. The mean 
percentage difference is -8% (i.e., CAMx underestimated the true mean by 8%), but the 
differences are larger for high O3 days (-10%) than for low O3 days (-3%), suggesting 
CAMx significantly underestimates the peak O3 events in El Paso, leading to the 
significance of the Is_Model variable in the GAM fits.  
 

Table 11. Ambient and CAMx GAM predictions for the 2019 maximum MDA8 O3 (ppbv) 
for El Paso based on the GAM model with the Is_Model variable. 

 Ambient 
(Is_Model = 0) 

CAMx 
(Is_Model = 1) 

% Difference 

Minimum 35.3 34.1 -3% 
25th Percentile 47.7 44.5 -7% 
Median 53.4 49.7 -7% 
Mean 52.7 48.7 -8% 
75th percentile 57.8 53.1 -8% 
Max 68.4 61.8 -10% 
Std. Dev. 6.9 5.9  

 
Table 12 shows the difference in smoke impacts calculated for 2019 days where the HMS 
indicated smoke over El Paso. Note that this subset only includes 8 days. The GAMs 
trained on ambient data and the CAMx data make similar predictions for the fire impacts 
on these days, with the CAMx predictions generally being 0.3-0.4 ppbv smaller but 
showing no dependence with the strength of the ambient fire impact. This suggests that 
the CAMx predictions of MDA8 O3 on fire days only slightly underpredict the actual 
impacts of fires on maximum MDA8 O3 in El Paso. 
   

Table 12. Estimated impact of smoke on the 2019 maximum MDA8 O3 (ppbv) for El 
Paso when calculated from Ambient and CAMx data. 

 Ambient CAMx 
Minimum 2.8 2.5 
25th Percentile 4.0 3.7 
Median 4.2 3.9 
Mean 4.3 4.0 
75th percentile 4.7 4.4 
Max 5.6 5.2 
Std. Dev. 0.8 0.8 

 
4.2.2 El Paso Background MDA8 O3 

The “Is_Model” variable was highly significant for El Paso background O3 (p<0.001), 
suggesting that the CAMx and ambient model results are significantly different. However, 
an examination of the smooth functions for each fit (Figure 8) shows very little difference 
between the smooth function fits for the cases with and without CAMx data, including for 
the dependence of maximum O3 on the FINN fire counts. The parametric coefficient for 
HMS smoke flag also showed only small differences between the two GAMs (0.036 for 
ambient data only, 0.031 when CAMx data is added). These results tend to suggest that 
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the difference between the CAMx predictions and the ambient data could be mostly 
explained by a fractional bias which is mostly accounted for by the Is_Model factor 
variable coefficient.  

 
Figure 8. Smooth function fits for El Paso background MDA8 O3 using (a) only ambient 
data and (b) using CAMx data with an Is_Model factor variable. 

 
We further examined the differences by (a) comparing the maximum MDA8 O3 
predictions for 2019 for different values of the Is_Model variable to examine the 
fractional bias between the model and ambient data and (b) comparing the GAM 
predictions with and without the smoke variables for 2019 to examine how the predicted 
smoke impacts differ in the ambient data and the CAMx simulations. Table 13 shows the 
differences in the GAM predictions of the ambient and CAMx data for 2019. The mean 
percentage difference is -4% (i.e., CAMx underestimated the true mean by 4%), but the 
differences are generally larger for high O3 days (-5%) than for low O3 days (-1%).  
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Table 13. Ambient and CAMx GAM predictions for the 2019 background MDA8 O3 
(ppbv) for El Paso based on the GAM model with the Is_Model variable. 

 Ambient 
(Is_Model = 0) 

CAMx 
(Is_Model = 1) 

% Difference 

Minimum 33.7 32.1 -5% 
25th Percentile 42.3 42.0 -1% 
Median 48.2 46.2 -4% 
Mean 47.6 45.9 -4% 
75th percentile 52.5 50.6 -4% 
Max 61.4 58.1 -5% 
Std. Dev. 6.3 5.9  

 
Table 14 shows the difference in smoke impacts calculated for 2019 days where the HMS 
indicated smoke over El Paso. Note that this subset only includes 8 days. The GAMs 
trained on ambient data and the CAMx data make similar predictions for the fire impacts 
on these days, with the CAMx predictions generally being 0.2-0.4 ppbv smaller but 
showing no dependence with the strength of the ambient fire impact. This suggests that 
the CAMx predictions of MDA8 O3 on fire days only slightly underpredict the actual 
impacts of fires on background MDA8 O3 in El Paso. 
   

Table 14. Estimated impact of smoke on the 2019 background MDA8 O3 (ppbv) for El 
Paso when calculated from Ambient and CAMx data. 

 Ambient CAMx 
Minimum 4.6 4.4 
25th Percentile 6.3 6.0 
Median 6.5 6.1 
Mean 6.4 6.0 
75th percentile 6.6 6.3 
Max 7.6 7.2 
Std. Dev. 0.8 0.8 

 
4.2.3 Houston Maximum MDA8 O3 

Our previous work (Deliverable 2, Task 1) had shown that combining the HMS smoke flag 
and the 10 degree FINN fire counts gave the best results for the ambient data for Houston 
Maximum MDA8 O3 values, and so those parameters were reused here. The “Is_Model” 
variable was not significant for this case (p>>0.1), suggesting that the CAMx and ambient 
model results are substantially the same. An examination of the smooth functions for each 
fit (Figure 9) shows very little difference between the smooth function fits for the cases 
with and without CAMx data, including for the dependence of maximum O3 on the FINN 
fire counts. The parametric coefficient for HMS smoke flag also showed only small 
differences between the two GAMs (0.033 for ambient data only, 0.034 when CAMx data 
is added).  



Texas AQRP Project 22-003      Final Report 

31 

 
Figure 9. Smooth function fits for Houston maximum MDA8 O3 using (a) only ambient 
data and (b) using CAMx data with an Is_Model factor variable. 

 
We further examined the differences by (a) comparing the maximum MDA8 O3 
predictions for 2019 for different values of the Is_Model variable to examine the 
fractional bias between the model and ambient data and (b) comparing the GAM 
predictions with and without the smoke variables for 2019 to examine how the predicted 
smoke impacts differ in the ambient data and the CAMx simulations. Table 15 shows the 
differences in the GAM predictions of the ambient and CAMx data for 2019. The mean 
percentage difference is 3% (i.e., CAMx overestimated the true mean by 3%), but the 
differences are fairly constant with large changes in ambient O3, consistent with the lack 
of significance for the Is_Model factor.  
 

Table 15. Ambient and CAMx GAM predictions for the 2019 maximum MDA8 O3 (ppbv) 
for Houston based on the GAM model with the Is_Model variable. 

 Ambient 
(Is_Model = 0) 

CAMx 
(Is_Model = 1) 

% Difference 

Minimum 27.7 28.2 2% 
25th Percentile 42.7 43.7 2% 
Median 50.2 51.2 2% 
Mean 52.4 53.9 3% 
75th percentile 61.3 62.5 2% 
Max 82.9 84.1 1% 
Std. Dev. 12.5 12.6  
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Table 16 shows the difference in smoke impacts calculated for 2019 days where the HMS 
indicated smoke over Houston. Note that this subset only includes 35 days. The GAMs 
trained on ambient data and the CAMx data make similar predictions for the fire impacts 
on these days, with the CAMx predictions generally being 0.2-0.4 ppbv larger but showing 
no dependence with the strength of the ambient fire impact. This suggests that the CAMx 
predictions of MDA8 O3 on fire days only slightly underpredict the actual impacts of fires 
on maximum MDA8 O3 in Houston. 
   

Table 16. Estimated impact of smoke on the 2019 maximum MDA8 O3 (ppbv) for 
Houston when calculated from Ambient and CAMx data. 

 Ambient CAMx 
Minimum 9.4 11.0 
25th Percentile 12.7 12.9 
Median 15.3 15.6 
Mean 15.6 15.8 
75th percentile 18.3 18.1 
Max 21.5 21.8 
Std. Dev. 3.4 3.3 

 
4.2.4 Houston Background MDA8 O3 

The “Is_Model” variable was highly significant for Houston background O3 (p<0.001), 
suggesting that the CAMx and ambient model results are significantly different. However, 
an examination of the smooth functions for each fit (Figure 10) shows very little difference 
between the smooth function fits for the cases with and without CAMx data, including for 
the dependence of maximum O3 on the FINN fire counts. However, the parametric 
coefficient for HMS smoke flag is different between the two GAMs (0.058 for ambient 
data only, 0.063 when CAMx data is added).  
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Figure 10. Smooth function fits for Houston background MDA8 O3 using (a) only 
ambient data and (b) using CAMx data with an Is_Model factor variable. 

 
We further examined the differences by (a) comparing the maximum MDA8 O3 
predictions for 2019 for different values of the Is_Model variable to examine the 
fractional bias between the model and ambient data and (b) comparing the GAM 
predictions with and without the smoke variables for 2019 to examine how the predicted 
smoke impacts differ in the ambient data and the CAMx simulations. Table 17 shows the 
differences in the GAM predictions of the ambient and CAMx data for 2019. The mean 
percentage difference is 21% (i.e., CAMx overestimated the true mean by 21%), with little 
dependence on the value of the ambient background O3. This large overestimate of 
background O3 by CAMx is very different than the results for El Paso background O3.  
 

Table 17. Ambient and CAMx GAM predictions for the 2019 background MDA8 O3 
(ppbv) for Houston based on the GAM model with the Is_Model variable. 

 Ambient 
(Is_Model = 0) 

CAMx 
(Is_Model = 1) 

% Difference 

Minimum 16.4 20.2 23% 
25th Percentile 23.9 28.9 21% 
Median 28.9 35.5 23% 
Mean 31.0 37.6 21% 
75th percentile 37.2 45.4 22% 
Max 57.6 67.0 16% 
Std. Dev. 9.1 11.0  
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Table 18 shows the difference in smoke impacts calculated for 2019 days where the HMS 
indicated smoke over Houston. Note that this subset only includes 39 days. The GAMs 
trained on ambient data and the CAMx data make similar predictions for the fire impacts 
on these days, with the CAMx predictions generally being 2 ppbv larger but showing no 
dependence with the strength of the ambient fire impact. This suggests that the CAMx 
predictions of MDA8 O3 on fire days overestimate the actual impacts of fires on 
background MDA8 O3 in Houston. 
   

Table 18. Estimated impact of smoke on the 2019 background MDA8 O3 (ppbv) for 
Houston when calculated from Ambient and CAMx data. 

 Ambient CAMx 
Minimum 5.6 8.4 
25th Percentile 8.1 10.1 
Median 9.2 11.1 
Mean 9.7 11.6 
75th percentile 10.9 13.0 
Max 16.1 18.1 
Std. Dev. 2.4 2.3 

 
5 Quality Assurance  

The processing and analysis scripts used in this project were inspected by a team member 
not involved in their creation for accuracy. All automated calculations and at least 10% of 
manual calculations will be inspected for correctness. This meets the requirement of Level 
III QAPPs that 10% of the data must be inspected.  
 
Expert judgement was used to evaluate the reasonableness of the GAM fits for O3 and 
STILT footprints. No concerning results were noted in these reviews. 
 
The GAM fits for PM2.5 show significant quality issues. The residuals are not normally 
distributed and show evidence of heteroskedacity. Various variable transforms did not 
remove these issues. Thus, the results of the PM2.5 GAM analysis should be treated with 
caution, and only used to generate hypotheses about the smoke and dust impacts on PM2.5 
in Texas that need to be confirmed via other methods.  
 
As the quality of the information, including secondary data, was not evaluated by EPA, 
the below disclaimer applies to all project deliverables: 

Disclaimer: The information contained in this report or deliverable has not 
been evaluated by EPA for this specific application. 
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6 Conclusions  
 
We performed a statistical analysis using generalized additive models (GAMs) to see how 
fires impacted background and maximum concentrations of O3 and PM2.5 in Houston and 
El Paso. Our results suggest that on days when the HMS indicated smoke over Houston 
and El Paso, the daily average PM2.5 was elevated by 1.4-2.6 µg/m3 on average 
(background and maximum) while the background MDA8 O3 was elevated by 2.4-8 ppbv 
on average. Unfortunately, the results depend strongly on which set of fire predictors is 
used. For Houston, the change in O3 impact as the smoke enters the city varies from -0.9 
ppbv to +6.0 ppbv, with three out of four methods predicting an increase in mean O3 as 
the smoke enters the city. In El Paso, the change in mean O3 impact as the smoke enters 
the city varies from -1.6 ppbv to -0.5 ppbv. The geographic fire variables from Sec. 4.1.3 
give the best fitting statistics and predicts fire impacts of 7.0-8.0 ppbv in both urban areas, 
with a slight decrease in the impact when the smoke enters the city.   

 
We also performed a statistical analysis using generalized additive models (GAMs) to see 
if the CAMx predictions were consistent with the impact of fires on background and 
maximum concentrations of O3 in Houston and El Paso. For El Paso, our analysis 
suggested that there were statistically significant differences between CAMx and the 
ambient data, but further analysis showed that the predicted impacts of fires in both cases 
were very similar. For Houston, however, the differences between CAMx and the ambient 
data fits were not statistically significant for maximum O3, but the CAMx data strongly 
overestimates the background O3 for Houston on both smoky and non-smoky days.  
 
Since CAMx generally appears to give similar predictions for the impacts of smoke as the 
ambient data, there is little need to identify areas for improvement as called for in 
Objective 3 of this project. The exception is for the impacts of smoke on Houston 
background O3, where CAMx predicts a 2 ppb larger impact. This is likely related to the 
general large overestimate of background O3 by CAMx in Houston but may also be due to 
errors in the chemistry as emissions from the Yucatan interact with halogens over the 
Gulf.  
 
In addition, our results showed that CAMx overestimates Houston background O3 on 
both smoky and non-smoky days, suggesting that further work needs to be done on ozone-
destroying halogen emissions and chemistry and on the biogenic emissions upwind of 
Houston. Similarly, the underpredictions of maximum O3 in El Paso suggest that further 
work is needed on CAMx emissions for El Paso and Ciudad Juarez and the O3 chemistry 
within the combined urban area. 

 
7 Recommendations for Further Study 

 
Future work should focus on finding ways to better determine the best set of smoke 
predictors for use in statistical studies such as this, with a focus on high tail events where 
smoke could lead to an exceedance of air quality standards using methods from Brown-
Steiner et al. (2021). While the predictions of smoke impact on O3 from CAMx appear to 
be reasonable based on this study, our results suggest that further work is needed to (a) 
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address the overestimate of Houston background O3 on both smoky and non-smoky days 
and (b) the underpredictions of maximum O3 in El Paso. 
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